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OUTLINE

. Motivation: Massive data from , Internet,
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. High-energy physics experimental data
Classification, Tiny signals in massive background

. Morals: Computing, Analysis, Inference

. Further research

New framework for inference from massive data sets?




1. Motivation: Massive Data

Measure mRINA expression in response to stimulus from
50K-70K genes/person

. Identify function of genes

: 0.5—1.0 Million /experiment (50K x 20 people)
Relatively easy: Specified hypotheses

Internet:

Cybersecurity, computer viruses, network attacks:

Scientific computing, financial transactions, business

operations, security procedures, ...
Goal: Detect attacks before they force shutdowns

Size: Thousands of packet transmits per minute




e High-energy Physics (HEP):

— Colliding beams of electrons (SLAC) or protons (CERN)
accelerated at very high energies (MeV /GeV /TeV)

— Collisions yield short-lived particles that decay into more

short-lived particles in any one of 100,000 ways (“events”)

— Most events well-characterized (particles, speeds, lifetimes)

— Others less well understood (e.g. those with B-mesons)

Goal: Find target events of interest amidst millions of
“uninteresting” events

Size: Millions per minute




Common Theme: Tiny signal in vast sea of noise

Detect abnormal behavior: disease surveillance; nuclear product

mfg; phone/charge card usage; financial transactions; ...

Easier when:
data streams stratify into smaller data sets
smaller sets are roughly independent of each other
sets can be modeled simply and parametrically
nature of potential abnormality is well-characterized

residual distribution is well specified = assess probability of
abnormality

SPC-type tools are applicable




Specification of hypotheses
: Many hypotheses — but straightforward

Internet: Many vaguely-specified hypotheses (outliers, excess

packets/transmissions, signals of potential attacks)

HEP: Innumerable partially-specified complex hypotheses
Comparisons of thousands of likelihoods is impractical
Likelihoods based on convenient model assumptions (Gaussian,
independence, ...)

Most frequent events are well-understood

“Interesting” events occur only rarely (0.1%)

Goal: Reduce “background” (uninteresting or well-characterized)

events and remove them (EDA)




Features of Internet traffic data:
e Relentless (“streaming”)

e Not independent of other systems: thousands of messages from

thousands of ports/addresses each minute

Diverse (text, numeric, image)
Dispersed (geographically)
e Data often not from some convenient mathematical pdf

What data should be collected?

How can anomolies be detected?




Features of HEP data:

Relentless (“streaming”)

“Events” are assumed to be relatively independent of each
other (e.g., occurrence of event type A tells us nothing about
the probability of event B occurence)

High-precision measurements — when we can see them
Mis-identified tracks associated with events

Data are not from a convenient mathematical pdf




An example of an “inconvenient” mathematical pdf

(from high-energy physics):
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(Can be simplified by assuming H_, Hy, H are real)

Graphics and visualization are critical




Fraud Detection Literature

o General overview: R.J. Bolton, D.J. Hand (2002), “Statistical
fraud detection: A review” (with discussion), Stat. Sci.

Experimental design: M. Schonlau, W. DuMouchel, W-H Ju,
A.F. Karr, M. Theus, Y. Vardi (2002), “Computer intrusion:
Detecting masquerades,” Stat. Sci.: designed experiments to

evaluate algorithms for detecting masquerade user (stratify by

user, identify characteristic features of user’s “signature”)

Modeling: W.S. Cleveland, D.X. Sun (2000), “Internet traffic
data,” JASA: Models for times between web accesses and

challenges of long-range dependence and stationarity




Telephone calling fraud (stratify by user): K.C. Cox, S.G. Eick,
G.J. Wills (1997), “Visual data mining: Recognizing telephone
calling fraud;” C. Cortes, D. Pregibon (2001), “Signature-based
methods for data streams,” Data Mining and Knowledge
Discovery Data Mining and Knowledge Discovery:

Nuclear product manufacturing: Spiegelman+Rosenblatt 1984

Disease surveillance: Siegrist et al. 2004, Stroup et al. 1989,

Waller and Gotway 2004
Bioterrorism: Hutwagner et al. 2003, many others

Visualizing network data: S. Krasser et al. 2005: “Real-time
and forensic network data analysis using animated and
coordinated visualization” IEEE Workshop on Information

Assurance, USMA: PC/time plots




New data types/structures have lead to advances in statistics

(EJW, PJH)
e Data from agricultural expts = Design of experiments
“Large” data sets = Statistical graphics
No specified probability distribution = Nonparametrics

‘Almost’ Gaussian distributions = Robust methods

Many-featured data = Multivariate statistics/displays

Clinical trials = Sequential analysis
Testing many hypotheses = Multiple comparisons

Many other examples ...




“Take-Home Messages”
Prevalence of streaming data will increase
Basically unusuable in raw form; require much pre-processing
Detecting “exotic” requires characterizing “typical”

New challenges for interdisciplinary teams:

data value: what data to collect/discard

data warehouse: acquisition, storage, distribution
tools, algorithms for pre-processing

data analysis: robust, efficient, “sufficient”
informative visual graphical displays

automated interpretation of visual inferences (P.K. Banerjee,

‘Automated band detection in remotely sensed imagery’)




Guiding Principles
Lessons from EDA

“... ‘exploratory data analysis’ is an attitude, a state of flexibility,

a willingness to look for those things that we believe are not there,
as well as for those we believe maight be there. Except for emphasis
on graphs, its tools are secondary to its purposes.... the tool-kit of

exploratory data analysis 1s, and must remain, open-ended.”

“Data analysts regard their models as a basis from which to
measure deviation, as a convenient bench mark in the wilderness,

expecting little truth and relying on less.”

— JWT, “Comment” (Parzen), JASA 1979, pp.121-122




“Statistics 1s ‘reactive” — very responsive to new problems that

arise in chemastry, biology, physics, ...” — P. Hall

“Advances in powerful computing equipment has had a dramatic
impact on statistical methods and theory. It has changed forever the

way data are analyzed” — P. Hall

“Far better an approximate answer to the right question, which is

often vague, than an exact answer to the wrong question, which

can always be made precise” — JWT 1962, p.13

“Better an tmprecise measure of something tmportant than a

precise measure of something unimportant” — D. Byar

“The greatest value of a picture is when it forces us to notice
what we never expected to see” — JWT, EDA, p.vi




“Rx”:
e Start with simplest of models
e Remove the obvious, magnify the residual
Iterate robustly, note non-conforming pieces
Control E(missed), not P{missed} — by piece
Make good use of graphical displays

“Cognostics”, “scagnostics” — diagnostics from

cognitive/scatterplot displays (Tukey 4+ Tukey 1985)




“Graphs will certainly be increasingly ‘drawn’ by the computer
without being touched by hands. More and more, too, as better
procedures of diagnosis and indication are automated, graphs, and
other forms of expository output, will, in many instances, cease to
be the vehicle through which a man diagnoses or seeks indications,

becoming, instead, the vehicle through which the man supervises,

and approves or disapproves, the diagnoses and indications already
found by the machine.” — JWT 1962, p.60




Atmospheric concentration of CO,

€02 minus quadratic fit
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DNA (genetic code: A,C,G,T) in cell nucleus

triplets of nucleotides code for amino acids
(ex: AAA or AAG codes for Lysine)

Genes = organized strings of nucleotides (in triplets)

Genes code for proteins (e.g., insulin)

Proteins made in cell cytoplasm

Cell needs genes into cytoplasm (only coding part of DNA)
DNA copy (cDNA: AT/CG); Excise introns; T — U (mRNA)

Gene expression — measure of mRNA concentration —

which may correlate with protein production




Ex (Kim Kafadar): Ca®T signaling in yeast cells

Ca?™ needed for cells to survive stresses (e.g., high salt, alkaline

pH, cell wall damage); promotes signaling through calcineurin
(protein phosphatase)

What does calcineurin do?

dephosphorylates & activates Crzlp/Tcenlp/Hal8p transcription
factor; Crzlp accumulates in cell nucleus, activates gene

transcription whose products promote adaptation to stress

What inhibits Crzlp?
Start with Ca?*




cDNA Experiment Preparation

e Grow 2 batches of cells: w/Ca?*, w/o Ca?™

e Wait 30 (£+) min; harvest cells, collect mRNA
Reverse-transcribe mRNA back to cDNA (U — T)

e Denature (“un-zip” — single strand)

e Label “no-Ca’” cells w/green flourophore (532nm)

e Label “Ca’” cells w/red flourophore (635nm)

e Hybridize both to cDNA slide

Process variability at each step




cDNA slide:

Single-strand copy of each gene (“probe”) printed in defined

locations (“spots”)

Ca/no-Ca flouorophore-labeled cDNA mixture placed on slide
cDNASs in mixture find matching partners

match = binding energy = radiates (532 if green; 635 if red)
Laser scanner records fluorescence by pixel

“Red” if more red-tagged mRNA (Ca batch)

“Green” if more green-tagged mRNA (no-Ca batch)

e “Yellow” if not much difference

Which spots (genes) have more red than (Multiplicity)




e Bonferroni too conservative (a/N when N = 50,000 is 107° =
Zerit — 489)

e MC procedures control P{> 1 False Positive} < «

e Benjamini & Hochberg (JRSSB 1995): FDR
Control expected proportion of false positives < «
(W = # significant by chance alone ~ Bi(N, «);
E(W) (FDR) easier than quantile W7 _,,)

Simplified: slides “spot” genes in “blocks” of ~ 500 — 1000

(red, ) highly-correlated data pairs ~ 3-parameter lognormal;
transform to bivariate Gaussian N5 (0, I); look for genes outside

circle

Process issues; Big p, small n; correlation among p (genes)




Actual data values: For each channel (532nm, 635nm):

e # of foreground (spot) pixel intensities
e Diameter of foreground spot
e # of background pixel intensities
median, mean, SD of foreground pixel intensities

median, mean, SD of background pixel intensities




Which pixels are used to compute the local background? First, a circular region
is drawn that is centered on the feature-indicator. This region has a diameter that
is three times the diameter of the current feature-indicator. All of the pixels
within this area are used to compute the background unless one of the following

is true:

e the pixel resides in a neighboring feature-indicator;

o the pixel is not wholly outside a two pixel wide ring around a feature-

indicator;

o the pixel is within the feature-indicator of interest.

In Figure 1, the black region
represents the pixels used for
computing the background, the
dark gray region represents the
pixels used for the feature
intensities, and the light gray
region represents excluded
pixels.

Global methods

GenePix Pro-also offers several
global background subtraction
methods. In a global method, a
single value for the background
is used for a whole array at each
wavelength.

The global background values
are based on local background
regions, as explained above in
“Local methods”. For example,
when calculating a ‘mean of all

M background pixels
2-pixel exclusion region
i teature pixels

Figure 1: defining background pixeis

GenePix Pro 4.0 User's Guide and Tutorial, Gopyright 2001 Axon Instruments, Inc.




Consistency of slide preparation:
e inkjet-like technology; 8x4 print tips (broken/worn?)
e non-uniform spots across slide
e registration errors
Sample preparation: ‘labeling efficiency:
e equal volumes of expt & control cells?
e equal amounts of Cy3 (red) / Cy5 (green) ?
e cqual levels of Cy3,Cy5 cell binding?

Instrumentation errors (laser scanner):

e range of fluoresence levels, both channels
e scanning accuracy/precision, both channels

e sample degradation over time between scans (532nm, 635nm)







25 26 27 28
29 30 31 32
Each block has 529 = 23 rows X 23 columns of spots

Data Transformation: g-family of (lognormal) distributions:

(X —a)/b=(e97 —1)/g

Z ~ N(0,1), a = location, b = scale, g = skewness

Z=2X)=g"" loglg- (X —a)/b+1]




Quantiles of Z and X transform consistently:

P{X<a, }=P{Z<z}=p
= zp =g~ -loglg - (vp —a)/b+ 1]

Fitting a, b, g: Hoaglin (1985, EDTTS Ch 11):

r, =a+b(ed*» —1)/g
r1—p =a+ble”9r —1)/g
To5 = a = x); (median)

gp = —(1/2p) - log|(x1—p — xpm) /(M — Tp)]
Repeat for all 32 blocks



Background estimation

e Counts appear even in absence of spots

(smearing, artifacts on slide, environment, ...)
o Adjustment: foreground — background (may be negative)
e Many background algorithms (Yang et al. 2002)
Block background medians: Two-way model
bij = m + row; + col; + res;;

e Plot row; vsi (i =1, ..., 23 rows)

e Plot col; vs j (j =1, ..., 23 columns)

e “Plus-one” fit if residuals show structure (ODOFNA):

bij = m + row; + col; + T - row; - col; + res;;
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“m” (common term) for each block:

8 “layers” x 4 “stripes” = 32 blocks

Fit two-way model to block terms:
mis = M + layer; + stripes + res;s
Spatial effects on slide

More stable estimate of background

Subtract fitted background from foreground (fewer negatives)

Transform adjusted foreground values = (Zg, Zg)
(ZRr, Zg) now approximately bivariate Gaussian

Relationships among ag, br, 9r, aqg, ba, 9c




Analysis steps

1. Median polish applied separately to background counts in each
block (possibly with smoothing of the fitted row and column
effects, and possibly with the extra term for non-additivity),
yielding 32 sets of fitted background counts

. Adjust foreground counts in each channel: subtract fitted

background counts in Step 1 from reported foreground counts

. Estimate for each block the parameters in g family to adjusted

foreground counts obtained in Step 2

. Transform adjusted foreground counts using g, a, b, to obtain

~ (Gaussian quantities

ZR = Gy, o log|gkr( ik akr)/bkr + 1]
26 = Grg 108l9kg (G — aig) /big + 1]




. Estimate correlation pg between Zr and Zs in each block:
cor(Zr,Zg,trim=3j/100)

. Calculate an approximate standard error for the difference
Zr— Zq as [2(1 — pi)]'/?, or

(Zy = (Zr— Zc) /21 = p), Z& = (Zr+ Zc)/\/2(1 + b)) ~
N5(0,1)

. Weighted average (2%, Zf) from several experiments

. Denote as “significant” those (Z}, Z(,) that fall outside a circle
of radius 3 SEs

Results on these data: About 178 genes “significant”
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4. Internet Traffic Data

Collected from anonymous surveillance machines outside “firewall”
to monitor incoming/outgoing traffic [Marchette 2001, Computer

Intrusion Detection and Network Monitoring|
All internet communications are transmitted via packets
Fundamental unit of information is packet

Packet consists of data and headers that control the

communications via IP, TCP
Flow = exchange of packets between source-destination pair
Connections = collections of flows (these data)

After much pre-processing, data file has summary statistics on

size/duration of flows (millions per hour)




4. Sample Data Set From George Mason Univ.

length
0.23
0.27
0.04
1389.10
373.99
0.13
1498.11
0.04
122.38

SIP
4367
18146
18208
24159
60315
28256
25699
18208
54985

DIP
54985
9675
28256
17171
37727
18208
4837
28256
4179

DPort
443
3921
1255
23
2073
80
9593
1251
1298

SPort
1631
25

80

Npkt
9

15

6

845
1759
10
65803
5

99

Nbyte
3211
49
373
5906

834778

816

35661821

373
85559




TCP

Instructions for delivering/sequencing packets coming from one

machine, destined for another

Data passed through “ports” (logical, rather than physical,
location; identifies connection through which data are passed

between machines)

216 — 65,536 ports per machine

— 210 Ports 0-1023: “well-known ports”

— Registered Ports 1024-49151 (e.g., 2049 for Sun’s nfs)
— 214 Ports 49152-65536: dynamic/private ports

Unprotected ports are prime candidates for intrusion, so

monitor amount of traffic in/out of ports




e Among the 2'° “well-known” Ports 0-1023:

21
22
23
25
80
110
443
554

ftp
ssh/scp
telnet
smtp
http
pop3
https

rtsp

file transfer protocol

secure shell /copy

network connection

mail transmission protocol
conventional web port (also 8080)
pop3 mail

secure web encryption

real-time streaming video/audio

e DPort = Destination Port; SPort = Source Port




Message sizes

Three (correlated) measures of “size” of session:
duration or len = duration (length) in seconds
Nbyte = Number of bytes
Npkt = Number of packets

Highly skewed distributions: use log transformation
f(x) =log(l + v/x): log.len, log.byte, log.pkt

(log(x) spreads many small x’s too much)

Potentially suspicious:
Few packets, each with many bytes
Many packets, each with very few bytes




Summary statistics over 135,605 records (1 hour in 2002)

len SIP DIP DPort SPort Npkt
0.0 259 259 20 20 2
0.2 4930 4024 80 1187 9
0.3 9765 8705 80 1369 10
0.6 20258 25164 80 1849 12
3.8 41282 45900 80 3681 21
62754 58202 10000 45

65276 65262 10000

2504 5139 6742
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5. ‘Visual Analytics’: Exploratory Plots

Detecting “exotic” requires characterizing “typical”

e Size variables are highly skewed (already seen)

e Boxplots suggest exceesive numbers of “outliers”
e Need better display of distribution

Letter value plots




Letter value Displays

Estimate quantiles corresponding to tail areas 27*:

Median (271): depth = dy; = (1 + n)/2

(1 + [dn])/2
Eighths (272): depth = dg = (1 + |dF])/2
)

Fourths (272): depth = dp =

Etc. until extreme (depth = 1
When d;, is a half-integer, average two adjacent order statistics

Actual tail area is closer to (dr, — 3)/(n+ %) [UREDA §2G]

Aymptotic correlation between adjacent LVs ~ \/g = 0.707



Letter value box plots

Small data sets: Limited information about tails
Boxplots show fourths, extent of data beyond fourths
Large data set: Tail quantiles more reliable

= Extend boxplots to include more letter values beyond

median, fourths

“Stopping Rules”: how many LVs to show?
How to display letter values?

Which observations are labeled as ‘outliers’?

Plot still shows only actual data values




Message Size and Length, 135,605 Sessions
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More exploratory plots
e Preponderance of relatively short sessions (not shown)

e Number of active sessions in 120 successive 30-second
non-overlapping intervals (mean 923, SD 140, ~ 30 limit 1343,

max 1299 = expected max of 120 N(923,140%) variates)

e Plot of 1log.len vs Session Start Time should be relatively

uninteresting




Evolutionary Displays for Internet data
Exploratory plots are useful for modeling activity sessions
Adapt evolutionary plots to summarized data
Can we summarize as quickly as the data arrive?

Fast algorithms can do little more than compare and add

(linear operations)

Robust methods usually rely on medians and sorts

Fast 4+ robust = compare and (keep or discard), follow by

linear operations




Waterfall Diagrams (Wegman and Marchette 2003)

e “Streaming plot”: Plot a point at location (s, t), where

t (time) = session start time (starts at 0, continues upward),

s is a source IP (SIP) or source port (SPort)

SIP: 4837 (occurs 4,754 times), 13525 (occurs 4,448 times),
65246 (occurs 12,150 times)

SPort: Trends across plot may indicate scanning SPorts

Useful for monitoring attempted access: For a given session
(exchange of packets), initial port may be assigned arbitrarily;
subsequent ones assigned by incrementing pattern
characteristic of operating system. Attacker can tell from

pattern of SPort increments about operating system




Skyline plots

“Streaming plot”: Plot access of DPorts or SPorts

Recall: 353 of the 380 DPorts (92.9%) occur < 5 times; the 3
most frequent DPorts are expected (http, https, smtp)

Plot X when DPort is accessed (apart from “well-known” ports
0-1023); red X if count > 10

Likewise for SPort but higher “control limit” 12% (4%) of the
6742 unique SPorts occur > 50 (100) times

Building a “skyline”




5. High-Energy Physics (HEP)

HEP experiments: Colliding beams of particles (MeV,GeV)
Each collision (event) = more particles (products)
Huge detector (“bandshell” of wires): detects final products

Thousands of computer programs:
— reconstruct particle tracks; connect particles w/tracks
— identify (?) particles (ex: +, mass 0.14GeV/c? = ‘n1’)

— estimate particle lifetime, momentum, mass
Goals:
e What happened? (decay type)

e How? (Parameter of model for specific decay)




Particles and Anti-particles: Classes and Properties

Fundamental particles: Fermions = Quarks U Leptons

e Quarks: 6 flavors

u, c, t: charge %

d, s, b: charge —%

e Leptons: 6 flavors
e, i, T: charge —1

Ve, V), V7t charge 0O
Quarks combine to form all other particles:

proton uud; anti-proton uid; neutron uud (~ 120 baryons qqq)

pion 7t = ud; kaon K~ = su; BT = bu; B~ = bu
B = bd; BY = bd (~ 140 mesons qq)




PARTICLES OF MATTER:

QUARKS

These particles make up protons, neutrons and a veritable zoo of lesser-known particles. They

have never been observed in isolation.

UP u

o

Electric charge: +2/3

Mass: 2 MeV

Constituent of ordinary matter; two up quarks,
plus a down, make up a proton.

d

Electric charge: -1/3

Mass: 5 MeV

Constituent of ordinary matter; two down
quarks, plus an up, compose a neutron.

CHARM

C

Electric charge: +2/3

Mass: 1.25 GeV

Unstable heavier cousin of the up; constituent
of the J/theta particle, which helped physicists
develop the Standard Model.

STRANGE

Electric charge: -1/3

Mass: 95 MeV

Unstable heaver cousin of the down;
constituent of the much studied kaon particle.

TOP t

Electric charge: +2/3

Mass: 171 GeV

Heaviest known particle, comparable in mass
to an atom of osmium. Very short-lived.

BOTTOM

b

Electric charge: -1/3

Mass: 4.2 GeV

Unstable and still heavier copy of the down;
constituent of the much studied B-meson
particle.




PARTICLES OF MATTER:

LEPTONS

These particles are immune to the strong force and are observed as isolated individuals. Each
neutrino shown here is actually a mixture of neutrino species, each of which has a definite

mass of no more than a few eV.

ELECTRON NEUTRINO

Ve

Electric charge: 0

Immune to both electromagnetism and the
strong force, it barely interacts at all but is
essential to radioactivity.

ELECTRON

Electric charge: -1

Mass: 0.511 MeV

The lightest charged particle, familiar as the
carrier of electric currents and the particles
orbiting atomic nuclei.

MUON NEUTRINO

Vu

Electric charge: 0
Appears in weak reactions involving the
muon.

MUON

e 1
<«

Electric charge: -1

Mass: 106 MeV

A heavier version of the electron, with a
lifetime of 2.2 microseconds; discovered as a
component of cosmic-ray showers.

TAU NEUTRINO

Vr

Electric charge: 0
Appears in weak reactions involving the tau
lepton.

TAU 1:
Electric charge: -1

Mass: 1.78 GeV

Another unstable and still heavier version of
the electron, with a lifetime of 0.3
picosecond.




PARTICLES OF FORCE:

BOSONS

At the quantum level, each force of nature is transmitted by a dedicated particle or set of

particles.

PHOTON

‘ Y

Electric charge: 0
Mass: 0
Carrier of electromagnetism, the quantum of

ZBOSON

Electric charge: 0

Mass: 91 MeV

Mediator of weak reactions that do not
change the identity of particles. Its range is
only about 107-18 meter.

light acts on electrically charged particles. It
W+*IW- BOSONS
Electric charge: +1 or -1

acts over unlimited distances.
Mass: 80.4 GeV

Mediators of weak reactions that change
particle flavor and charge. Their range is only
about 10”-18 meter.

GLUONS

@ 9

Electric charge: 0

Mass: 0

Eight species of gluons carry the strong
interaction, acting on quarks and on other
gluons. They do not feel electromagnetic or

Electric charge: 0

HIGGS

(not yet observed)

weak interactions.

Mass: Expected below 1 TeV, most likely between 113 and 192 GeV.
Believed to endow W and Z bosons, quarks and leptons with mass.




HOW THE FORCES ACT

An interaction among several colliding particles can change their energy, momentum or type.
An interaction can even cause a single particle in isolation to decay spontaneously.

ELECTROMAGNETIC INTERACTION
The electromagnetic interaction acts on
charged particles, leaving the particles
unchanged. It causes like-charged particles to

STRONG INTERACTION

The strong force acts on quarks and gluons. It
binds them together to form protons, neutrons
and more. Indirectly, it also binds protons and
neutrons into atomic nuceli.

’ Original path ’

Charged %

particle
Deflected path

WEAK INTERACTION

The weak interaction acts on quarks and
leptons. Its best-known effect is to transmute
a down quark into an up quark, which in turn
causes a neutron to become a proton plus an
electron and a neutrino.

Neutron

HIGGS INTERACTION

The Higgs field (gray background) is thought
to fill space like a fluid, impeding the W and
Z bosons and thereby limiting the range of
weak interactions. The Higgs also interacts
with quarks and leptons, endowing them with
mass.

Higgs field

o
P




Examples from chart of Standard Model (http://CPEPweb.org)

1. neutron (udd) B-decay to a proton (uud), an electron (e™), and

an antineutrino (7,)

. electron-positron (eTe™) collision = meson pair B°BY via a

virtual v photon or virtual Z boson

. proton pair (pp) collision = many hadrons (baryons qqq or §qq

or mesons ¢¢) and bosons (force carriers)

Masses, charges, spins of ¢’s (u,d,t,b,c,s), plus theory of behavior
(Standard Model), determine masses, charges, spins of ~ 120

currently known baryons (~ 140 mesons)




Standard Madel of

FUNDAMENTAL PARTICLES AND INTERACTIONS

BOSONS




Hundreds of thousands of possible decays (events)

~ 1 event per 10 nanoseconds

Data collection for 1 day would fill 200 DV Ds

Massive filtering steps (“triggers”) to discard data from

99+% of events whose mechanisms are well understood
SLAC saves data from ~ 100 events per second
Sensor resolution: may miss some particles from event
Mis-1D: may connect particle tracks with wrong event

Mis-reconstruct: right tracks, wrong reconstruction







SLAC collides beams of electrons, at energies designed to generate

events whose products involve many b’s (‘b factory’):
B-mesons B" = bd, BY = bd
Example event sequence:
. Energy from collision produces two quarks, b and b

. Remaining energy from collision creates other qq pairs

(ui, dd, ...), plus kinetic energy

. q7 = vt = charged B-mesons bu = BT, bu = B~ (~ 50%)
¢G4 = dd = neutral B-mesons bd = B°, bd = B (~ 50%)

4. B-mesons then go on to decay in one of thousands of ways

Note: About 0.1% of collisions producing b — b have insufficient

energy to create new quarks, so bb stays together as an v particle




Example: “target” decay mode of interest:

. b’s are produced (~20% of saved events)

. energy from b — b converts to mass of dd quark pair
= BY or BY (neutral B-mesons)

. Either B or B — ptp~ — 7%z Un¥zn~

. Expect at least 6-10 tracks per event (4 pions)
Questions

e How often do such events occur? ( 107?)

e How long do sub-particles live? (e.g., 10713 sec)

e Did anything else occur? (histogram, Poisson counts)




Guiding principle:
Less ‘noise’ = Better estimates of decay rates

Use data to rule out likely “imposters”
(#tracks, final Fy < or = Ej, etc.)

Data: AE, mp, Tthr, m,+, m,-, Hy, Hy
— assuming our target decay occurred!

Physicists use simulations to predict features of data from our
target event (uni-/bivariate pdfs); discard events where data lie

outside ‘cuts’ of ‘likely’ regions on each variable

Some real ‘imposter’ data is generated from events at different
energies; assume frequency of ‘imposter’ events is the same at

energy where target decay occurs

Likelihood ratio test on all possible “imposters” not practical

But we might be able to reduce “background” by considering




“likelihoods” from “top 20” most likely imposter decays
Are ‘background’ events sufficiently different from ‘signal’ events?

How realistic are the simulated data sets?

Can we approximate the “likelihoods” of the “top 207 events?

How well do mixture models fit with non-Gaussian components,

tiny signals?
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kde2d: Simulated GSB data kde2d: Simulated GSB data
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Initial attempts to identify target events:
e Average variables on 100 events at a time

e Dot-product each 100-average vector with subsequent vector

e Does distribution of vive for GSB data look different from

distribution of ujus for signal data?

e Does distribution of vius for GSB v1 and signal ve look
different from distribution of vivy for GSB data?




Letter—value plot of dot—products (avg 100)

8
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1: GSB data 2:signal data 3: GSB-signal data




Are 7 features sufficient to identify p — p events?

Suppose K independent features of particle A:

e «; = P{ feature 7 indicates A | Particle A }

e (3; = P{ feature i does not indicate A | Not Particle A }
e p = P{ Particle A } (frequency of occurrence)

Bayes rule:

P(A) = P{Particle A | All features indicate A}

How large must K be, for P(A) to be ‘large’?
Consider a = 0.6, 3 = 0.5 (tiny P(A) when g < 0.5)
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Derived variables: Simulated data

Graphical comparisons of GSB (real grand side band) data and
simulated background data appear reasonably close

Simulated signal (rhotrue) data set has 5,913 events; all but 20
have Bmass > 5.265

Simulated noise (background) data set has 9,937 ‘B’ events
(either BT B~ or BYBY), but only 2,404 have Bmass > 5.265

Compare a random selection of 2,404 signal events with 2,404
background events

For 5,913 signal events:

— delE has mean 0.012, SD 0.0580

— Bmass has mean 5.279, SD 0.0034

— Bivariate plot of normalized Bmass versus normalized delE

is roughly circular




— Mrho+, Mrho- have mean 0.784, SD 0.1100

— Bivariate plot of normalized Mrho- versus normalized Mrho+

is somewhat circular
Bivariate density plots suggest two useful variables:

e EB-rad = [Euclidean distance of (delE, Bmass) from (0, 5.28)]
(after standardizing delE and Bmass by their SDs)

e RR-rad = |[distance of (Mrho+, Mrho-) from (0.784, 0.784)]
(after standardizing Mrho+ and Mrho- by SD = 0.1100)




Can 4 features indicate regions of high signal density?

Define three intervals of roughly equal density of signal events for

each variable:

e delE/Bmass transformed radius: (0, 0.88, 1.28, 3.1)

e Mrho+/Mrho- transformed radius: (0, 0.88, 1.28, 2.8)
e Hi: (—0.5, -0.016, 0.457, 1.0)
o H2: (-0.5, 0.004, 0.457, 1.0)

If variables are independent and coverage is uniform, expect
2404 /81 ~ 30 events per cell

Plot Bmass versus delE for all 81 combinations
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Which of the 81 “signal-to-noise” ratios are “significant”?

Poisson test of rates: r-count ~ Bi(r-count + b-count, 0.5)

‘Significant’ p-values by FDR at 0.05 (0.01) for 50 (47) ratios whose
p-values are below 0.013 (0.008) in these regions:

e whenever point is close to center of (delE,Bmass) plot AND is
close to center of (Mrho+Mrho-) plot (i.e., (radius)3 < 1.28)

e whenever point is very close to center of one plot but distant in
second plot, if H1 and H2 are close to their means




Tabled entry: r-count/b-count, for each (EB-rad, RR-rad) region

H2 = 1 H2 = 2
32/2  46/6 48/1  40/4
23/0 — 35/5  41/10
— — 33/18 —
40/1  36/4 29/0  31/8
26/4 32/15 26/2  36/7
— — 29/11 —
30/2 — 23/1 —
23/3  22/8 29/5 —




Summary and future work

New data types/structures lead to advances in science

Information age = Excellent opportunities for collaborations
among statisticians, computer scientists, engineers
Streaming data require:

— much pre-processing to be interpretable

— much summarization so they can be displayed

— fast, scalable processing algorithms

Streaming data offer new challenges to statisticians:
— data acquisition, storage, distribution

— fast algorithms and meaningful displays

— better combinations of classical, robust analyses

We still need exploratory plots:
detecting “exotic” requires characterizing “typical”




e EDA helps to identify natural ”units” for study
e We need new tools & displays for streaming data, but ...

e Displays will be monitored by non-statisticians, so

interpretation must be clear:

“Churchill Eisenhart ... defined practical power as the product
of the mathematical power by the probability that the procedure
will be used. A compact procedure may well be used so much
more often as to more than compensate for its loss of
mathematical power.”

— J.W. Tukey, “A Quick, Compact, Two-Sample Test to

Duckworth’s Specifications,” Technometrics 1(1), p.32
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